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Abstract Unlike taking the same external electrical
stimulation to discuss chaotic synchronization in the
literature, the synchronization between two uncou-
ple FitzHugh–Nagumo (FHN) neurons with different
ionic currents and external electrical stimulations is
considered. The main contribution of this study is
the application of a robust adaptive sliding-mode con-
troller instead of the active elimination. The proposed
sliding mode controller associated with time varying
feedback gains cannot only tackle the system uncer-
tainties and external disturbances, but also compensate
for the mismatch nonlinear dynamics of synchronized
error system without direct cancellation. Meanwhile,
these feedback gains are not determined in advance but
updated by the adaptive laws. Sufficient conditions to
guarantee the stable synchronization are given in the
sense of the Lyapunov stability theorem. In addition,
numerical simulations are also performed to verify the
effectiveness of presented scheme.
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1 Introduction

FitzHugh–Nagumo (FHN) neuron model was derived
as simplified model of the Hodglein–Huxley (HH)
neuron model [1] by FitzHugh [2] and Nagumo et
al. [3]. In [4], the qualitative study of the FHN model
was done and a variety of nonlinear phenomena were
exhibited. As well as bifurcations of equilibria and
limit cycles, a hard oscillation and separated loops can
be demonstrated under suitable values of the system
parameters. The quantitative study of chaos and bifur-
cation for FHN system was provided in [5] where ap-
plying the forward Euler scheme to discrete the differ-
ential equations.

Recently, to investigate processing of information
in brain, the FHN neuron model is usually utilized to
study neural firings due to the simplicity. Synchroniza-
tion of chaotic neurons under external electric stimu-
lation (EES) is attracted many interests during the last
decade. With the development of control theory, vari-
ous control schemes have been successfully applied to
control and synchronization of chaotic neurons [6–9].
In [6], controlling chaos in FHN neuron by the adap-
tive passive method was introduced. Synchronization
of two uncoupled FHN neurons in EES was found
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Fig. 1 State trajectory of
the space-clamped
HughFitzHugh–Nagumo
neuron with parameter
values a = 0.25, b = 0.02,
c = 0.005, I1 = 0.082,
Im = 0.055, ω1 = 0.1

in [7] where a nonlinear control technology was ad-
dressed, [8] where the author designed H-infinity vari-
able universe adaptive fuzzy control, and [9] where a
novel internal mode control method was proposed for
the robust output synchronization. In [10], Hopf and
Bogdanov–Takens bifurcations in a coupled FHN neu-
ral system with gap junction are investigated. Mean-
while, for two coupled FHN neurons in EES, feed-
back linearization control [11], back-steeping control
laws [12, 13], robust adaptive sliding mode controls
[14, 15], and robust adaptive fuzzy control [16] have
been introduced to accomplish the chaotic synchro-
nization.

The space-clamped FHN neuron subject to ESS
is described by the following second-order nonau-
tonomous differential equations [6]:
⎧
⎪⎨

⎪⎩

ẋ1 = −x3
1 + (a + 1)x2

1 − ax1 − y1 + I1

+ Im cos(ω1t)

ẏ1 = cx1 − by1

(1)

where the first state variable, x1, is the action poten-
tial, that is, the potential difference across the mem-
brane. The second state variable, y1, is the recovery
variable which represents the effects of changes in
those ion-channel conductances which tend to return
the membrane potential to its resting level [5]; System
parameters a, b, and c are positive constants; I1 stands
for the ionic current inside the cell and Im cos(ω1t)

represents the ESS with the amplitude Im and pe-
riod T1 = 2π/ω1. The dynamics of the space-clamped
FHN neuron with EES was studied in [5, 17]. It is con-
cluded that with the certain value of Im the neuron ex-
periences complicated chaotic firing. Meanwhile, the

dynamic behavior of FHN neuron is very sensitive to
the variation in the stimulation signal frequency. The
space-clamped FHN neuron depicting chaotic dynam-
ics for the parameter values sets, a = 0.25, b = 0.02,
c = 0.005, I1 = 0.082, Im = 0.055, ω1 = 0.1 [5], with
the initial conditions (x1(0), y1(0)) = (0.2,0.12), is as
shown in Fig. 1.

In the past, the chaotic synchronization was dis-
cussed under the assumption of two FHN neurons had
the same ionic current and EES [7–9]. In this study,
the chaotic synchronized problem in the presence of
system uncertainty and external disturbances between
two uncoupled FHN neurons is considered with dif-
ferent ionic currents and external electrical stimula-
tions. The introduced robust adaptive sliding mode
control associated with time varying gains is shown to
be able to compensate for the nonlinear dynamics of
the synchronized error system without actively elimi-
nating it as that commonly adopted in the traditional
approaches [18–22]. Meanwhile, these time varying
feedback gains are not to be determined in advance
but updated adaptively. Based on the Lyapunov stabil-
ity theory, sufficient conditions to guarantee the sta-
ble synchronization are given. In addition, numerical
simulations are performed to show effectiveness of the
presented scheme.

The rest of this paper is organized as follows. The
formulation of synchronized problem and the con-
troller design are addressed in Sect. 2. In Sect. 3, nu-
merical simulations are performed to demonstrate the
effectiveness of the proposed controller. In the final
section, a concluding remark is made.
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2 Problem formulation and control design

In the sequel, the synchronized problem between two
uncoupled space-clamped FHN neuron with the case
of different ionic currents and external electrical stim-
ulations is considered. The master neuron is taken to
be the form of (1). The slave neuron is chosen in the
similar structure of (1) with system uncertainty, exter-
nal disturbance, and can be described in the follow-
ing:
⎧
⎪⎨

⎪⎩

ẋ2 = −x3
2 + (a + 1)x2

2 − ax2 − y2 + I2

+ Is cos(ω2t) + �(x2, y2) + d(t) + φ(t)

ẏ2 = cx2 − by2

(2)

where x2, y2 are state variables of the slave system.
I2 is the ionic current inside the cell and Is cos(ω2t)

represents the ESS with amplitude Is and period
T2 = 2π/ω2. In this case, it is assumed that I2 �= I1,
Is �= Im, ω2 �= ω1. �(x2, y2) is the system uncertainty,
d(t) is the external disturbance, and φ(t) is the con-
trol to be determined. In general, the system uncer-
tainty �(x2, y2) and the external disturbance d(t) are
assumed to be bounded as follows:

0 ≤ ∣
∣�(x2, y2)

∣
∣ ≤ Ω, ∀x2, y2,

0 ≤ ∣
∣d(t)

∣
∣ ≤ D, ∀t

(3)

where Ω and D are positive constants. In addition,
it is assumed that the slave neuron in (2) exists a
unique solution in the time interval [t0,∞), t0 > 0
for any given initial conditions. By taking account
of the different ionic currents and the external elec-
trical stimulations between systems (1) and (2), the
synchronized problem is formulated in the follow-
ing.

To proceed, the synchronized error states between
systems (1) and (2) are defined as

ex(t) = x2(t) − x1(t), ey(t) = y2(t) − y1(t). (4)

Taking the time derivative of (4), the synchronized er-
ror system can be expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėx = F1(x1, x2) + F2(x1, x2) − aex − ey

+ (I2 − I1) + Is cos(ω2t) − Im cos(ω1t)

+ �(x2, y2) + d(t) + φ(t)

ėy = cex − bey

(5)

where F1(x1, x2) = x3
1 − x3

2 and F2(x1, x2) =
(a + 1)(x2

2 − x2
1) are nonlinear functions represented

the mismatch dynamics. To this end, it is clear that the

problem of synchronization is replaced by the equiva-
lence of stabilizing the synchronized error system (5)
by utilizing an appropriate control input φ(t). The goal
of the current problem is to design the control φ(t)

such that limt→∞ ex(t) → 0 and limt→∞ ey(t) → 0
for any initial conditions of the synchronized error sys-
tem (5). It means that the behavior of the slave neuron
can tend to that of the master neuron.

For chaotic synchronization of FHN neuron, the ef-
fects of nonlinear functions F1(x1, x2) and F2(x1, x2)

are the key problem to be coped with. There were
many approaches to compensate nonlinear effects of
F1(x1, x2) and F2(x1, x2) in the literature, such as ac-
tive control [7], backstepping methods [12, 13], the
approximation theory [8, 14–16], and the adaptive
sliding mode control associated with direct elimina-
tions [20–22]. In this study, the robust adaptive sliding
mode control with time varying feedback gains is in-
troduced to tackle this problem.

Firstly, the synchronized error system (5) can be
rewritten as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėx = [−f1(x1, x2) + f2(x1, x2)]ex − aex − ey

+ (I2 − I1) + Is cos(ω2t) − Im cos(ω1t)

+ �(x2, y2) + d(t) + φ(t)

ėy = cex − bey

(6)

where the functionsf1(x1, x2) = x2
1 + x1x2 + x2

2 and
f2(x1, x2) = (a + 1)(x1 + x2)are bounded because of
the bounded phase trajectories of x1(t), x2(t).

The design approach of robust adaptive sliding
mode controller involves two steps. (1) The appropri-
ate sliding surface for desired sliding motion is se-
lected. In the sliding surface, the slave neuron will be
synchronous with the master neuron asymptotically.
(2) The robust controller φ(t) is designed that brings
any trajectory in phase space of the error dynamics
to and stay in the sliding surface even in the events
of system uncertainties �(x2, y2) and external distur-
bances d(t).

Then, a sliding mode surface is chosen σ(t) =
0 [18], where

σ(t) = ex(t) + key(t), k > 0 (7)

From the second equation in (6), it obtains

ex(t) = [
ėy(t) + bey(t)

]
/c (8)

Substituting (8) into (7) with σ(t) = 0 gives

ėy(t) + (b + kc)ey(t) = 0 (9)



www.manaraa.com

2092 C.-C. Yang, C.-L. Lin

For k > 0, it is obviously that the stability on the slid-
ing surface σ(t) = 0 is surely guaranteed. In the fol-
lowing, the control φ(t) of system (6) for achieving
synchronization is proposed.

Theorem If the control law φ(t) in system (6) is taken
as follows:

φ(t) = ey(t) − [
K0 + Kx(t)

∣
∣ex(t)

∣
∣ + Ky(t)

∣
∣ey(t)

∣
∣

+ M
∣
∣σ(t)

∣
∣N

] · sgn
(
σ(t)

)
(10)

where σ(t) is the sliding surface defined in (7), K0 >

|I2 − I1| + Is + Im + Ω + D > 0, 0 < N < 1, and
M > 0 are positive design constants and sgn(•) de-
notes the sign function, Kx(t) and Ky(t) are the adap-
tive feedback gains updated, respectively, according to
the following adaptation algorithms:

K̇x(t) = ρx

∣
∣ex(t)

∣
∣
∣
∣σ(t)

∣
∣, Kx(0) = 0, ρx > 0 (11)

K̇y(t) = ρy

∣
∣ey(t)

∣
∣
∣
∣σ(t)

∣
∣, Ky(0) = 0, ρy > 0 (12)

where ρx,ρy are the positive adaptation gains de-
termining the adaptation process. The states of the
synchronized error system (6) will asymptotically ap-
proach to and stay in the sliding surface σ(t) = 0.

Proof The Lyapunov function candidate of the prob-
lem is chosen as

V1(t) = 1

2
σ 2(t) + 1

2ρx

(
Kx(t) − K̄x

)2

+ 1

2ρy

(
Ky(t) − K̄y

)2 (13)

where K̄x, K̄y are positive constants and satisfy

K̄x > a + kc + |f1| + |f2| > 0, K̄y > kb > 0 (14)

Taking the time derivative of (13) along with the so-
lutions of the synchronized error system (6), the se-
lection of the sliding mode surface (7), and the con-
troller (10), it yields

V̇1 = σ σ̇ + 1

ρx

(Kx − K̄x)K̇x + 1

ρy

(Ky − K̄y)K̇y

= (−a − f1 + f2)exσ + [
(I2 − I1) + Is cosω2t

− Im cosω1t + � + d
]
σ

+ kcexσ − kbeyσ − [
K0 + Kx |ex | + Ky |ey |

+ M|σ |N ]|σ |
+ (Kx − K̄x)|ex ||σ | + (Ky − K̄y)|ey ||σ |

≤ −[
K0 − (|I2 − I1| + Is + Im + Ω + D

)]|σ |

− (K̄y − kb)|ey ||σ |
− [

K̄x − (
a + kc + |f1| + |f2|

)]|ex ||σ |
− M

∣
∣σ(t)

∣
∣N+1

< 0 (15)

From (15), since V1(t) is a positive definite and de-
creasing function, it follows that the zero equilibrium
point (σ = 0,Kx = K̄x,Ky = K̄y ) would be asymp-
totically stable. It means the states of the synchronized
error system (6) will asymptotically approach to and
stay in the sliding surface σ(t) = 0. On the sliding
surface, the stability of synchronized error state ey(t)

is surely guaranteed by choosing k > 0 according to
(9) and induced the synchronized error state ex(t) ap-
proaching to zero. It follows that both of the synchro-
nized error states will ultimately tend to zeros. As the
control design meets the requirements depicted in this
theorem, the synchronization between systems (1) and
(2) is achieved. This completes the proof. �

The controller φ(t) can also be designed with con-
stant feedback gains in the following form:

φ(t) = ey(t) − [
K0 + K̄x

∣
∣ex(t)

∣
∣ + K̄y

∣
∣ey(t)

∣
∣

+ M
∣
∣σ(t)

∣
∣N

] · sgn
(
σ(t)

)
(16)

By applying the controller (16) to the synchronized er-
ror system (6), the state trajectory in the phase space
will approach to the sliding surface σ(t) = 0 in a finite
time. For this case, the Lyapunov function of system
(6) is selected as V = σ 2. By taking the time deriva-
tive of V , it yields the following inequality:

V̇ ≤ −M|σ |N+1 ≤ −MV n,

0 < n = N + 1

2
< 1 (17)

which implies that V 1−n(t) ≤ V 1−n(0) − M(1 − n)t ,
t ∈ [0, ts] and V (t) = 0 when t ≥ ts > 0 [23]. How-
ever, the controller proposed in (16) utilizes fixed feed-
back gains without depending on the values of initial
synchronized error states. This means that the feed-
back gains seem to be large induced a kind of waste in
practice. Thus, the controller in (10) associated with
adaptive feedback gains significantly improves this
drawback.

Remark 1 The controller in (10) demonstrates a dis-
continuous control law. To reduce the phenomenon of
chattering, the sign function in the controller can be
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Fig. 2 Time responses of
synchronized error states
between two synchronized
space-clamped
FitzHugh–Nagumo neurons

modified as relay(σ ) = σ/(|σ | + ε) where ε is a suffi-
ciently small design constant. With regard to the proof
of stability for the modified sliding mode controller,
one is referred to [24].

Remark 2 Controlling chaos in space-clamped FHN
neuron by adaptive passive method was addressed by
Wei et al. [6]. In fact, the robust adaptive sliding mode
controller proposed in this study is also valid for the
control of space-clamped FHN neuron with the pres-
ence of system uncertainties and external disturbances.

Remark 3 For chaotic synchronization, the various re-
searches of adaptive sliding mode control schemes
were addressed in the literature. The central idea of
the past studies in [20–22] was applied the adaptive
technique to estimate the switching gain of the com-
pensation for system uncertainties and external distur-
bances. However, the mismatched nonlinear dynamics
of synchronized error system were still to be cancelled
directly by the equivalent control part of the sliding
mode controllers in these researches. In the presence
of system uncertainty and external disturbances, the
main contribution of this study is the application of
proposed robust adaptive sliding mode controller in-
stead of the active elimination of nonlinear dynamics
to achieve chaotic synchronization between two un-
coupled FHN neurons with different ionic currents and
external electrical stimulations.

3 Numerical simulations

In the sequel, the numerical simulation is performed
to verify effectiveness of the proposed robust adap-
tive sliding mode controller. Using the fourth-order
Runge–Kutta method with the initial conditions
(x1(0), y1(0)) = (−0.5,0.75), (x2(0), y2(0)) =
(1.0,0.6) and system parameters given in Fig. 1
to ensure the chaotic dynamics of the state vari-
ables, the synchronized error system (6) with the
controller defined in (10) is numerically solved. The
system uncertainty and the external disturbance are
assumed to be �(x2, y2) = 0.15 sin(x2) cos(y2) and
d = 0.15 sin(0.05πt), respectively. The ionic currents
of two FHN neurons are selected as I1 = 0.082 and
I2 = 0.1, respectively. The external electrical stim-
ulations of two master and slave FHN neurons are
assumed with different current amplitudes and fre-
quencies. They are taken as Im = 0.055, ω1 = 0.1,
Is = 0.06, ω2 = 0.15.

For the robust adaptive sliding mode controller de-
scribed in (10) associated with (11) and (12), the pos-
itive design constants are chosen as k = 45, K0 = 2,
M = 0.2, N = 1/2, ρx = 1, and ρy = 5. In Fig. 2,
it is shown that the synchronized error states oscil-
late irregularly when the controller is switched off,
and when the controller is in action at t = 320 s, both
of the synchronized error states converge to zero and
the synchronization is achieved. Time responses of the
sliding mode, the control signal, and the adaptive feed-
back gains are depicted in Figs. 3 and 4, respectively.
It can be seen that the control signal is continuous and
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Fig. 3 Time responses of
the sliding mode and
control signal for slave
space-clamped
FitzHugh–Nagumo neuron

Fig. 4 Time responses of
the adaptive feedback gains
for slave space-clamped
FitzHugh–Nagumo neuron

chattering free. In Fig. 5, time responses of state trajec-
tories for the two synchronized space-clamped FHN
neurons are illustrated. As expected, one can observe
that the state trajectories of systems (1) and (2) sep-
arate from each other for different initial conditions.
After the control in action at t = 320 s, all state vari-
ables tend to synchronize, where the slave neuron is
with system uncertainties and external disturbances.

4 Conclusions

In this paper, by taking account of different ionic
currents and external electrical stimulations, the ro-

bust adaptive sliding mode controllers has been ad-
dressed for achieving synchronization between two
uncoupled space-clamped FitzHugh–Nagumo neurons
with the presence of system uncertainties external dis-
turbances. The designed controller has two adaptive
feedback gains that can compensate the nonlinear dy-
namics without active elimination. In addition, these
two adaptive feedback gains are not determined in ad-
vance, but updated according to the products of ab-
solute values of sliding mode and synchronized error
states. Based on the Lyapunov stability theorem, suffi-
cient conditions guaranteeing synchronization are de-
rived. Some numerical simulations are also performed
to verify effectiveness of the presented scheme.
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Fig. 5 Time responses of
state trajectories for two
synchronized
space-clamped
FitzHugh–Nagumo neurons
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